Оптимизация эксплуатационных расходов при использовании сборноразборного фундамента для ветроэнергетических установок

 1,2 Ю.М.Стрелков, 1,2,3 Л.С.Сабитов, 1,3 Л.Р.Маилян, 1,4 И.Н.Гарькин 1 Казанский федеральный университет;

Аннотация: Рассматривается оптимизация налогооблагаемой базы объектов капитального строительства, это стремление заказчиков и эксплуатирующих организаций управлять стоимостью владения тем или иным техническим решением, что, безусловно, разумно в современных условиях, когда при принятии технического решения оценивают его полную стоимость, в том числе, так называемую стоимость владения за весь период жизненного цикла объекта, от формирования замысла по созданию будущего объекта до его вывода из эксплуатации.

Ключевые слова: сборно-разборный фундамент, защитный элемент, поточный метод, ветроэлектрическая установка, строительные конструкции

При объектов строительства использовании капитального предпринимаются, успешно, И довольно попытки по-новому идентифицировать сооружения, ранее относимые к объектам недвижимости, как объекты движимого имущества. В качестве наиболее представительного примера можно привести ВЭУ (ветроэнергетическую установку), когда башня, гондола с генератором, ступица с лопастями, и в целом сооружение, идентифицируется, как объект движимого имущества. Это стало возможным при идентификации ВЭУ, как заводского изделия, монтируемого на месте установки [1,2], что подтверждается заводским паспортом и единым сертификатом происхождения оборудования. Данная концепция уже принята и прошла успешное апробирование при вводе в эксплуатацию оборудования ветропарков [3] ОАО «ВетроОГК», в частности на Адыгейской ВЭС (рис.1 фото одной из установки). Характеристики ВЭУ: номинальная мощность 300кВт; кол-во лопастей – 3 шт.; материал лопастей – стекловолокно;

² Казанский государственный энергетический университет;

³ Донской государственный технический университет;

 $^{^{4}}$ Пензенский государственный университет архитектуры и строительства.

плотность мощности — $350~{\rm BT/m^2}$; установленная скорость ветра — $3.0~{\rm m/c}$; номинальная скорость ветра — $11.5~{\rm m/c}$; скорость ветра, при которой установка отключается — $25~{\rm m/c}$; максимальная расчетная скорость ветра — $70~{\rm m/c}$; напряжение - $0.4{\rm kB}$. Массогабаритные характеристики: диаметр ротора — $33{\rm m}$; высота ступицы — $41.5{\rm m}$; площадь охвата — $855{\rm m^2}$; вес ротора — $5~{\rm tohh}$; вес гондолы — $18~{\rm tohh}$; вес башни — $50~{\rm tohh}$ (в трубном исполнении); общий вес установки $73~{\rm tohhh}$ ы.

Рис.1. Ветроэнергетическая установка (фото авторов)

Со стороны надзорных органов, осуществляющих приемку оборудования в эксплуатацию, нет препятствий для реализации данной концепции.

В данной работе предлагаем развить данную концепцию и с применением сборно-разборных фундаментов перейти на принципиально новый уровень идентификации фундаментных сооружений, как объектов

движимого имущества. Это позволит значительно снизить налогооблагаемую базу и оптимизировать стоимость эксплуатации в будущем [4,5].

Возможность последующей разборки фундамента с сохранением его основных элементов (рис.2) позволит идентифицировать его, как объект движимого имущества, что, безусловно, окажет положительное влияние на механизмы налогообложения, применимые для объектов движимого имущества.

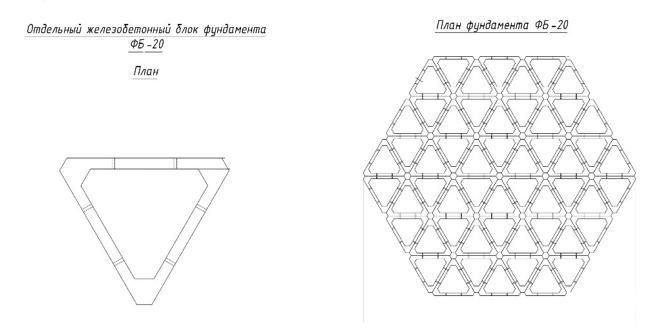


Рис. 2. Сборно-разборный фундамент (разработано авторами)

Применяя принципы расчета амортизации и налога на недвижимое имущество, в соответствии с применимым правом Российской Федерации, выполнен ниже представленный расчет потенциальной экономии средств Заказчика с учетом идентификации фундаментов ветроэнергетических установок энергоцентра общей мощностью 1,5МВт, как объектов движимого имущества [5,6]. В расчете применена сметная стоимость сборно-разборного фундамента 6 384 000 рублей, рассчитанная по смете. Таким образом, общая сметная стоимость фундаментов ветроэнергетических установок, входящих в состав энергоцентра, составит 31,9 млн. рублей. Расчётный срок службы фундамента применят 25 лет, налог на недвижимость рассчитан по ставке 2%

Потенциальная год. ЭКОНОМИЯ заказчика 3a счет оптимизации налогооблагаемой базы составит не менее 24 % от стоимости капитальных вложений только в строительную часть, а при идентификации большей части элементов энергоцентра, как объектов движимого имущества, экономия средств будет еще более внушительной [7,8]. Применение принципа идентификации строительных конструкций, таких, как сборно-разборный фундамент в качестве объектов движимого имущества, позволит заказчикам сократить стоимость владения объектами на всем жизненном цикле и снизить налоговую нагрузку. Необходимо отметить, что применяемый принцип не потребует изменений законодательной базы, что позволит получить и ощутить эффект «прямо сейчас», не требуя значительных временных ресурсов на ее изменение. При проектировании будущего энергоцентра проектной организацией, необходимо учесть данный фактор при идентификации всех элементов и строительных конструкций для исключения двойного трактования со стороны надзорных и фискальных органов. Это будет достигнуто при чётких, обоснованных трактованиях сути сборно-разборной строительной конструкции, описания ее поэлементной технологии монтажа и демонтажа, с доказательством возможности ее перемещения и сборки на новом месте, а также ее идентификации, как объекта движимого имущества [9,10]. Широкое применение сборноразборных конструкций, таких, как предлагаемый нами фундамент, в народном хозяйстве, позволит при необходимости также высвобождать необходимые площади при перемещении фундаментов на базе сборноразборной конструкции, как в условиях городской застройки [11,12], так и в условиях рекультивации плодородных земель, что особенно актуально при размещении ветропарков, которые, как правило, расположены на землях сельскохозяйственных угодий.

Таблица 2. Налог на недвижимость ВЭЛ

	I	та п ед вижние
Год использования	Стоимость основного средства	Налог
	31 920 000,0	Недвижимость
1	30 643 200,0	612 864,0
2	29 366 400,0	587 328,0
3	28 089 600,0	561 792,0
4	26 812 800,0	536 256,0
5	25 536 000,0	510 720,0
6	24 259 200,0	485 184,0
7	22 982 400,0	459 648,0
8	21 705 600,0	434 112,0
9	20 428 800,0	408 576,0
10	19 152 000,0	383 040,0
11	17 875 200,0	357 504,0
12	16 598 400,0	331 968,0
13	15 321 600,0	306 432,0
14	14 044 800,0	280 896,0
15	12 768 000,0	255 360,0
16	11 491 200,0	229 824,0
17	10 214 400,0	204 288,0
18	8 937 600,0	178 752,0
19	7 660 800,0	153 216,0
20	6 384 000,0	127 680,0
21	5 107 200,0	102 144,0
22	3 830 400,0	76 608,0
23	2 553 600,0	51 072,0
24	1 276 800,0	25 536,0
25	0,0	0,0
ИТОГО		7 660 800,0

Целесообразность применения конструкций заводского изготовления сборно-разборных фундаментов обладает рядом преимуществ для районов с неразвитой строительной индустрией и инфраструктурой вообще, за счет изготовления элементов фундамента в заводских условиях, с получением

гарантированного качества будущей конструкции [13,14]. Развертывание полноценной инфраструктуры строительной индустрии в труднодоступных районах не только экономически необоснованно, с учетом высокой стоимости временных зданий и сооружений, относимых на стоимость основного строительства, но и порой технически труднореализуемо, особенно с учетом сложной логистики, требующей применения специальной техники.

Выводы:

Таким образом, при сооружении сборно-разборного фундамента нами применяются элементы и конструкции заводского изготовления, а именно: забивные сваи элементы фундамента. Такой подход позволяет минимизировать зависимость OT существующей инфраструктуры строительной индустрии района сооружения объекта или нескольких объектов, что особенно актуально при решении задач энергоснабжения с помощью ветрогенераторов в труднодоступных районах.

Литература:

- 1. Токарева Л.А., Стрелков Ю.М., Сабитов Л.С., Хусаинов Р.Д. Конструктивные особенности проектирования фундаментов балластного типа для башенных сооружений // Вестник ГГНТУ. Технические науки. 2022. Т. 18. № 4 (30). С. 90-98.
- 2. Токарева Л.А. Анализ конструктивных решений башенных сооружений в энергетике // Сборник: XXV Всероссийский аспирантскомагистерский научный семинар, посвященный Дню энергетика. Материалы конференции. В 3-х томах. Под общей редакцией Э.Ю. Абдуллазянова. Казань, 2022. С. 240-242.
- 3. Сабитов Л.С., Маилян Л.Р. Совершенствование конструкций башенных сооружений и их численное моделирование на примере башни

ветроэлектрической установки // Строительство и архитектура. 2021. Т. 9. № 2. С. 46-50.

- 4. Клюев С.В., Клюев А.В. Оптимальное проектирование стержневых систем на основе энергетического критерия при силовых и температурных воздействиях с учетом безопасной устойчивости // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2009. № 1. С. 60-63
- 5. Шеина С. Г., Виноградова Е.В., Денисенко Ю.С. Пример применения ВІМ технологий при обследовании зданий и сооружений // Инженерный вестник Дона. 2021. URL: № 6. ivdon.ru/ru/magazine/archive/n6y2021/7037
- 6. Кузин Н.Я., Багдоев С.Г. Оценка внешних факторов на несущую способность конструкций гражданских зданий // Региональная архитектура и строительство.2012. №2 С.79-82
- 7. Шеин А.И., Зернов В.В., Зайцев М.Б. Усиление несущих элементов ендов стропильных крыш // Региональная архитектура и строительство. 2020. № 1 (42). С. 135-139.
- 8. Cherkasov A., Koroleva L., Bratanovskii S., Smigel M. Sacred pagan temples in the caucasus region: characteristic features // Muzeológia a Kultúrne Dedičstvo. 2018. T. 6. № 2. C. 59-69.
- 9. Гарькин И.Н., Гарькина И.А., Поляков Л.Г. Консервация сооружений мазутного хозяйства: технология разработки проекта // Инженерный вестник Дона. 2023, №2. ivdon.ru/ru/magazine/archive/n2y2023/8205
- 10. Garkin I.N., Garkina I.A. System approach to technical expertise construction of building and facilities // Contemporary Engineering Sciences. 2015. Vol.8. №5. pp. 213-217.

- 11. Чепурненко В.С., Хашхожев К.Н., Языев С.Б., Аваков А.А. Совершенствование расчёта гибких трубобетонных колонн с учётом обжатия в плоскостях сечений // Строительные материалы и изделия. 2021. Т. 4. № 3. С. 41- 53.
- 12. Ельцов Р.И. Разработка технологического процесса изготовления сварных конструкций // Строительные материалы и изделия. 2021. Т. 4. № 5. С. 35 44.
- 13. Монахов В.А., Зайцев М.Б. Построение кинематической матрицы плоских стержневых систем // Региональная архитектура и строительство. 2019. № 3 (40). С. 130-134.
- 14. Баламирзоев А.Г., Муртузов М.М., Селимханов Д.Н., Дибирова З.Г., Абдуллаев А.Р. Нелинейные поперечные колебания составных стержней при действии статически приложенной поперечной нагрузки // Строительные материалы и изделия. 2021. Т. 4. № 2. С. 29 37.

References

- 1. Tokareva L.A., Strelkov YU.M., Sabitov L.S., Husainov R.D. Vestnik GGNTU. Tekhnicheskie nauki. 2022. T. 18. № 4 (30). pp. 90-98.
- 2. Tokareva L.A. XXV Vserossijskij aspirantsko-magisterskij nauchnyj seminar, posvyashchennyj Dnyu energetika. Materialy konferencii. V 3-h tomah. Pod obshchej redakciej E.YU. Abdullazyanova. Kazan', 2022. pp. 240-242.V.
- 3. Sabitov L.S., Mailyan L.R. Stroitel'stvo i arhitektura. 2021. T. 9. № 2. p. 46-50.
- 4. Klyuev S.V., Klyuev A.V. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. SHuhova. 2009. № 1. pp. 60-63
- 5. Sheina S. G., Vinogradova E. V., Denisenko Yu. C. Inzhenernyj vestnik Dona. 2021. № 6. URL: ivdon.ru/ru/magazine/archive/n6y2021/7037
- 6. Kuzin N.YA., Bagdoev S.G. Regional'naya arhitektura i stroitel'stvo.2012. №2, pp.79-82.

- 7. SHein A.I., Zernov V.V., Zajcev M.B. Regional'naya arhitektura i stroitel'stvo. 2020. № 1 (42). pp. 135-139.
- 8. Cherkasov A., Koroleva L., Bratanovskii S., Smigel M. Muzeológia a Kultúrne Dedičstvo. 2018. T. 6. № 2. pp. 59-69.
- 9. Gar'kin I.N., Gar'kina I.A., Polyakov L.G. Inzhenernyj vestnik Dona. 2023, №2. URL:ivdon.ru/ru/magazine/archive/n2y2023/8205
- 10. Garkin I.N., Garkina I.A. Contemporary Engineering Sciences. 2015. Vol.8. №5. Pp.213-217.
- 11. CHepurnenko V.S., Hashkhozhev K.N., YAzyev S.B., Avakov A.A. Stroitel'nye materialy i izdeliya. 2021. T. 4. № 3. pp. 41 53.
- 12. El'cov R.I. Stroitel'nye materialy i izdeliya. 2021. T. 4. № 5. pp. 35 44.
- 13. Monahov V.A., Zajcev M.B. Regional'naya arhitektura i stroitel'stvo. 2019. № 3 (40). pp. 130-134.
- 14. Balamirzoev A.G., Murtuzov M.M., Selimhanov D.N., Dibirova Z.G., Abdullaev A.R Stroitel'nye materialy i izdeliya. 2021. T. 4. № 2. pp. 29 37.